Post-buckling analysis of a strut with general initial imperfection

Author(s):  
S. S. E. Lam
2021 ◽  
Vol 9 (10) ◽  
pp. 1074
Author(s):  
Debtanu Seth ◽  
Bappaditya Manna ◽  
Jagdish Telangrao Shahu ◽  
Tiago Fazeres-Ferradosa ◽  
Francisco Taveira Pinto ◽  
...  

The buckling analysis of an offshore pipeline refers to the analysis of temperature-induced uplift and lateral buckling of pipelines by analytical, numerical, and experimental means. Thus, the current study discusses different research performed on thermal pipe-buckling and the different factors affecting the pipeline’s buckling behaviour. The current study consists of the dependency of the pipe-buckling direction on the seabed features and burial condition; the pre-buckling and post-buckling load-displacement behaviour of the pipeline; the effect of soil weight, burial depth, axial resistance, imperfection amplitude, temperature difference, interface tensile capacity, and diameter-to-thickness ratio on the uplift and lateral resistance; and the failure mechanism of the pipeline. Moreover, the effect of external hydrostatic pressure, bending moment, initial imperfection, sectional rigidity, and diameter-to-thickness ratio of the pipeline on collapse load of the pipeline during buckling were also included in the study. This work highlights the existing knowledge on the topic along with the main findings performed up to recent research. In addition, the reference literature on the topic is given and analysed to contribute to a broad perspective on buckling analysis of offshore pipelines. This work provides a starting point to identify further innovation and development guidelines for professionals and researchers dealing with offshore pipelines, which are key infrastructures for numerous maritime applications.


2010 ◽  
Vol 123-125 ◽  
pp. 280-283
Author(s):  
Chang Yull Lee ◽  
Ji Hwan Kim

The post-buckling of the functionally graded composite plate under thermal environment with aerodynamic loading is studied. The structural model has three layers with ceramic, FGM and metal, respectively. The outer layers of the sandwich plate are different homogeneous and isotropic material properties for ceramic and metal. Whereas the core is FGM layer, material properties vary continuously from one interface to the other in the thickness direction according to a simple power law distribution in terms of the volume fractions. Governing equations are derived by using the principle of virtual work and numerical solutions are solved through a finite element method. The first-order shear deformation theory and von-Karman strain-displacement relations are based to derive governing equations of the plate. Aerodynamic effects are dealt by adopting nonlinear third-order piston theory for structural and aerodynamic nonlinearity. The Newton-Raphson iterative method applied for solving the nonlinear equations of the thermal post-buckling analysis


Sign in / Sign up

Export Citation Format

Share Document